NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD ## WETLAND RESTORATION (Ac.) CODE 657 #### **DEFINITION** The rehabilitation of a degraded wetland or the reestablishment of a wetland so that soils, hydrology, vegetative community, and habitat are a close approximation of the original natural condition that existed prior to modification to the extent practicable. ## **PURPOSE** To restore wetland function, value, habitat, diversity, and capacity to a close approximation of the pre-disturbance by: - Restoring hydric soil - Restoring hydrology (depth duration and season of inundation, and/or duration and season of soil saturation). - Restoring native vegetation (including the removal of undesired species, and/or seeding or planting of desired species). ## CONDITIONS WHERE PRACTICE APPLIES This practice applies only to natural wetland sites with hydric soils, or problem soils that are hydric, which have been subject to hydrologic or vegetative degradation, or to sites where hydric soils are covered by fill, sediment, or other deposits. This practice is applicable only where the natural hydrologic conditions, including the hydroperiods, can be approximated by modifying drainage and/or by artificial flooding of a duration and frequency similar to the original, natural conditions. This practice does not apply: - to treat point and non-point sources of water pollution (Constructed Wetland -656); - to modify an existing wetland where specific attributes are heightened by management objectives, and/or returning a degraded wetland back to a wetland but to a different type than what previously existed on the site (Wetland Enhancement - 659); - to creating a wetland on a site location which historically was not a wetland (Wetland Creation - 658). #### **CRITERIA** #### General Criteria Applicable to All Purposes The purpose, goals and objectives of the restoration shall be clearly outlined, including soils, hydrology and vegetation criteria that are to be met and are appropriate for the site and the project purposes. The soil, hydrology and vegetative characteristics existing on the site and the contributing watershed shall be documented before restoration of the site begins. The nutrient and pesticide tolerance of the species planned shall be considered where known nutrient and pesticide contamination exists. Upon completion of the restoration, the site shall meet soil, hydrology, vegetation and habitat conditions of the wetland that previously existed on the site to the extent practicable. Where offsite drainage or the presence of invasive species impact the site, the design shall compensate for these landscape changes (e.g., increased water depth, berms or microtopography). Sites suspected of containing hazardous waste shall be tested to identify appropriate remedial measures. Sites containing hazardous material shall be cleaned prior to the installation of this practice. Invasive species, federal/state listed noxious plant species, and nuisance species (e.g., those whose presence or overpopulation jeopardize the practice) shall be controlled on the site. This includes the manipulation of water levels to control unwanted vegetation. The establishment and/or use of non-native plant species shall be discouraged where possible. Water rights are assured prior to restoration if required. The landowner shall obtain necessary local, state, and federal permits that apply before restoration. ## Criteria for Hydric Soil Restoration Restoration sites will be located on hydric soils, or on problem soil areas that are hydric. If the hydric soil is covered by fill, sediment, spoil, or other depositional material, the material covering the hydric soil shall, to the extent technically feasible, be removed. ## Criteria for Hydrology Restoration The hydrology (including the timing of inflow and outflow, duration, and frequency) and hydroperiod of the restored site shall approximate the conditions that existed before alteration, e.g., dynamic and static water levels, soil saturation. This includes affects to hydrology restoration caused by roads, ditches, drains, terraces, etc. within the watershed. The work associated with the wetland shall not adversely affect adjacent properties or other water users unless agreed to by signed written letter, easement or permit. A natural water supply should be used to reestablish the site's hydrology that approximates the needs of the wetland type. If this is not possible, an artificial water supply can be used; however, these sources shall not be diverted from other wetland resources (e.g. prairie pothole wetland complexes or springs). To the extent technically feasible reestablish topographic relief and/or microtopography. Use reference sites within the area to determine desired topographic relief. Excavations from within the wetland shall remove sediment to approximate the original topography and/or microtopography or establish a water level that will compensate for the sediment that remains. Existing drainage systems will be utilized, removed or modified as needed to achieve the intended purpose. The standards and specifications for Dike (356) and Structure for Water Control (587) will be used as appropriate. Refer to the Engineering Field Handbook, Chapter 13, "Wetland Restoration, Enhancement, and Creation," and Chapter 6, Structures," for additional design information. Existing drainage systems will be utilized, removed, or modified as needed to achieve the intended purpose. ### Criteria for Vegetative Restoration Hydrophytic vegetation restoration shall be of species typical for the wetland type(s) being established. Preference shall be given to native wetland plants with localized genetic material. Plant materials collected or grown within a 200 mile radius from the site is considered local. Where natural colonization of pre-identified, selected species will realistically dominate within 5 years, sites may be left to revegetate naturally. If a site has not become dominated by the targeted species within 5 years, active forms of revegetation may be required. Adequate substrate material and site preparation necessary for proper establishment of the selected plant species shall be included in the design. Where planting and/or seeding is necessary, the minimum number of native species to be established shall be based upon the type of vegetative communities present and the vegetation type planned: Where the dominant vegetation will be herbaceous community types, a subset of the original vegetative community shall be established within 5 years; or, a suitable precursor to the original community will be established within 5 years that creates conditions suitable for the establishment of the native community. Species richness shall be addressed in the planning of herbaceous communities. On sites which were predominantly herbaceous vegetation prior to modification and planting and/or seeding is necessary, the minimum number of native species to be established shall be based upon the number of ecological sites present. Sites restored to only one ecological site shall be established with at least two species adapted to the site. Sites with two or more ecological sites (i.e., wet meadow, shallow marsh, or slough eco-sites, etc.) shall be established with at least one native species on each ecological site. Herbaceous vegetation may be established by a variety of methods including: mechanical or aerial seeding, topsoiling, organic mat placement, wetland sod, vegetative sprigs, wetland hay, or etc., over the entire site or a portion of the site and at densities and depths appropriate. Where the dominant vegetation will be forest or woodland community types, vegetation establishment will include a minimum of three tree or shrub species on each ecological site (i.e., low flat, bottom ridge eco-sites, etc.), where appropriate. Tree (and shrub) planting will follow the criteria of Conservation Practice 612 – Tree Planting. Seed planting rates and site preparation will meet the criteria of Conservation Practice 652 – Woodland Direct Seeding rates shall be based upon percentage of pure live seed that shall be tested within six months of planting. #### CONSIDERATIONS It is expected that for wildlife purposes, planting density and stocking rates will generally be lower than for production purposes, and that the selection of species will generally be different than those used for production purposes. On sites where woody vegetation will dominate, consider adding 1 to 2 dead snags, tree stumps or logs per acre to provide structure and cover for wildlife and a carbon source for food chain support. Consider impact that water surface drawdowns will have on concentrating aquatic species such as turtles into diminished pool area resulting in increased mortality. Consider existing wetland functions and/or values that may be adversely impacted. Consider the effect restoration will have on disease vectors such as mosquitoes. Consider effect of volumes and rates of runoff, infiltration, evaporation and transpiration on the water budget. Consider the effects of varying water levels in response to potential climatic events such as wet or dry periods. Consider effects on downstream flows or aquifers that would affect other water uses or users. Consider the effect of water control structures on the ability of fish or other aquatic species to move in and out of the wetland. Consider establishing herbaceous vegetation by a variety of methods over the entire site, or a portion of the site, and at densities and depths appropriate. Consider effects on wetlands and waterrelated resources, including fish and wildlife habitats, which would be associated with the practice. Consider linking wetlands by corridors wherever appropriate to enhance the wetland's use and colonization by the native flora and fauna. Consider establishing vegetative buffers on surrounding uplands to reduce sediment and soluble and sediment-attached substance carried by runoff and/or wind. Consider effects on temperature of water resources to prevent undesired effects on aquatic and wildlife communities. Consider the effects of soil disturbance and probability of invasion by unwanted species. For discharge wetlands, consider underground upslope water and/or groundwater source availability. Consider microtopography and hydroperiod when determining which species to plant. Consider controlling water levels to prevent oxidation of organic soils and inundated organic matter and materials. Consider changes in salt movement/ concentrations in the soil resulting from hydrologic alternations. ## PLANS AND SPECIFICATIONS Specifications for this practice shall be prepared for each site. Specifications shall be recorded using approved specifications sheets, job sheets, narrative statements in the conservation plan, or other documentation. Requirements for the operation and maintenance of the practice shall be incorporated into site specifications. Plans and specifications should be reviewed by staff with appropriate training in design and implementation of wetland restoration. #### **OPERATION AND MAINTENANCE** The following actions shall be carried out to insure that this practice functions as intended throughout its expected life. These actions include normal repetitive activities in the application and use of the practice (operation), and repair and upkeep of the practice (maintenance): Any use of fertilizers, mechanical treatments, prescribed burning, pesticides and other chemicals shall assure that the intended purpose of the wetland restoration shall not be compromised; Biological control of undesirable plant species and pests (e.g., using predator or parasitic species) shall be implemented where available and feasible; Establish an inspection schedule for embankments and structures for damage assessment; The depth of accumulated sediment should be measured and the accumulations removed when the planned project objectives are jeopardized. Management actions shall maintain vegetation, and control undesirable vegetation. For wildlife habitat purposes, haying and grazing, if justified as a necessary wildlife/wetland management tool, can be used for management of vegetation. Disturbance to ground nesting species shall be minimized. The control of water depth and duration may be utilized to control unwanted vegetation. #### REFERENCES: Executive order 13112, Invasive Species, February 3, 1999. Federal Register: Vol.64, No.25. Feb. 8, 1999. Galatowitsch, Susan, et al, 1994. Restoring Prairie Wetlands: an ecological approach. Iowa State University Press, Ames IA. 246 pp. Hall, C.D. and F.J. Cuthbert. 2000. Impact of a controlled wetland drawdown on Blanding's Turtles in Minnesota. Chelonian Conservation Biology. Vol. 3, No. 4, pp. 643-649Hurt, G.W. and V.W. Carlisle, 2001. Delineating Hydric Soils, in Wetland Soils – Genesis, Hydrology, Landscapes and Classification. Edited by J.L. Richardson and M.J Vepraskas. CRC Press, Boca Raton, FL pp. 183 – 206. Kingsbury, Bruce & Joanne Gibson, 2002. Habitat Management Guidelines for Amphibians and Reptiles of the Midwest. Partners in Amphibian & Reptile Conservation, Ft Wayne IN, 57 pp. M.J. Vepraskas and S. W. Sprecher editors, 1997. Aquic Conditions and Hydric Soils: The Problem Soils. Soil Science Society of America Special Publication Number 50. SSSA, Inc. Madison, WI. Maschhoff, Justin T & James H. Dooley, 2001. Functional Requirements and Design Parameters for Restocking Coarse Woody Features in Restored Wetlands, ASAE Meeting Presentation, Paper No: 012059. USDA, NRCS, 2003. ECS 190-15 Wetland Restoration, Enhancement, Management & Monitoring. 425 pp. USDA, NRCS. Wetland Restoration, Enhancement, or Creation, Engineering Field Handbook Chapter 13, Part 650, pp. 3, 24, 77, 78. ## NRCS, WY March 2006 USDA, NRCS. 2002. Field Indicators of Hydric Soils in the U.S., Version 5.0. G.W. Hurt, P.M. Whited and R.F. Pringle (eds.). USDA, NRCS in cooperation with the National Technical Committee for Hydric Soils, Fort Worth, TX.